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Review
Glossary

Agonistic behavior: social behavior related to fighting, but broader than

aggressive behavior because it includes threats, displays, retreats, placating

aggressors, and conciliation.

Crooktail: posture in which a monkey struts with tail held in stiff ‘?’ shape.

Crustacean: arthropod species of animal (such as a crab, shrimp, or lobster)

that has several pairs of legs and a body made up of sections that are covered

in a hard outer shell.

Fluoxetine: antidepressant drug that blocks the reuptake of serotonin in the

brain (also known as Prozac).

Optogenetics: technique used in neuroscience that uses light to control

neurons that have been genetically sensitized to light.

Schema: a mental structure of preconceived ideas based on common

experiences that helps to understand the familiar world.

Serotonergic: related to the monoamine neurotransmitter serotonin.

Sham rage: display of aggressive behavior without an obvious target.
Hierarchical social status greatly influences behavior and
health. Human and animal studies have begun to identi-
fy the brain regions that are activated during the forma-
tion of social hierarchies. They point towards the
prefrontal cortex (PFC) as a central regulator, with brain
areas upstream of the PFC conveying information about
social status, and downstream brain regions executing
dominance behavior. This review summarizes our cur-
rent knowledge on the neural circuits that control social
status. We discuss how the neural mechanisms for vari-
ous types of dominance behavior can be studied in
laboratory rodents by selective manipulation of neuro-
nal activity or synaptic plasticity. These studies may help
in finding the cause of social stress-related mental and
physical health problems.

The concept of social hierarchy
The brain is capable of executing complex social interac-
tions, the most prominent among which is the formation of
dominance hierarchies. The concept of a hierarchical struc-
ture in social organization was first scientifically described
by Norwegian scientist Thorleif Schjelderup-Ebbe in 1921,
when he derived a ‘pecking order’ within a group of domes-
tic fowl and proposed that such a hierarchical structure
reduced intense conflicts and injuries, saved energy, and
promoted social stability [1]. Since Schjelderup-Ebbe’s
work it is now generally accepted that the dominance
hierarchy is a universal phenomenon among social ani-
mals, ranging from insects and fish, to rodents and pri-
mates [2]. Pecking order determines which individual has
priority access to desirable resources, including food,
mates, and resting spots. In humans, the similar concept
of socioeconomic status (SES; see Glossary), defined by
relative income, education, and occupational position,
has been identified as the single strongest predictor of
health [3] (Box 1).

To increase our understanding of the neural mecha-
nisms that underlie dominance behavior and, conversely,
how social status may influence brain function and health,
scientific studies on model organisms are crucial. In this
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review we first discuss methods typically used to measure
dominance in laboratory rodents, with a focus on the
dominance tube test. We next summarize our current
knowledge on the cortical mechanisms that recognize
and regulate social status, highlighting the prefrontal
cortex as a central regulator. Finally we propose subcorti-
cal brain regions that can potentially execute different
types of hierarchical behavior.

Measures of dominance hierarchy in laboratory rodents
Extensive knowledge is accumulating on the brain circuits
that execute the behavior of laboratory rodents. These
animals provide a pertinent model in which to study the
neuronal mechanisms that underlie social behavior. So-
cially dominant behavior is observed in rodents in the wild
(Box 2) and is characterized by: winning in conflict situa-
tions, display of agonistic behavior, first access to food,
marking of territory, a prominent order in grooming, pro-
active courtship, and a low participation in labor. For each
of these types of natural behavior, a test paradigm was
developed to determine social rank among groups of labo-
ratory rodents living in a closed environment.

A useful operational definition of social dominance is
consistently winning at points of social conflict, in other
words when the motivational priorities of two or more
individuals are incompatible [4]. To mimic such a situation,
Socioeconomic status (SES): economic and sociological combined total

measure of the work experience of an individual and of the economic and

social position of an individual or a family in relation to others, based on

income, education, and occupation.

Subordination: the act of forcing someone into a submissive role.

(-)D9-trans-tetrahydrocannabinol (THC): the principal psychoactive constituent

of the cannabis plant.

Transitivity: the mathematical concept of relations stating that if A > B, and

B > C, then A > C.
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Box 1. Relationship between social status and health

In developed nations, socioeconomic status shows a steep inverse

association with mortality and morbidity rates [82]. It was proposed

that chronic psychosocial stress experienced by those in subordi-

nate roles underlies this strong correlation between social status

and health [3]. Stress functions to prepare the body for a flight or

fight response through activation of the sympathetic nervous

system and the hypothalamic–pituitary–adrenal (HPA) axis, leading

to the release of the stress hormone cortisol. In response to this rise

in cortisol, lymphocytes traffic out of the circulation into effector

sites, in anticipation of a potential injury. When periods of

heightened psychological stress are long-lasting, and cortisol levels

remain chronically high, the immune system becomes suppressed

[83]. A strong relationship between social status and stress levels

was demonstrated in a study of a baboon society [84]. Social rank

and cortisol level were linearly correlated, with levels being high in

subordinate baboons and low in dominant ones (with one excep-

tion: cortisol levels in the alpha male were also high). In line with

this, wound-healing was quicker in socially dominant baboons [85].

Unequally distributed resources are a cause of psychological

stress in individuals of low social status. In groups of laboratory rats

that have unlimited access to food and water, subordinates and

dominants have similar glucocorticoid levels [86]. However, when

food resources become limited, subordinate rats exhibit signifi-

cantly higher glucocorticoid levels than their dominant cage-mates

[87]. Low social status can also be stressful as a result of

subordination by more dominant individuals. Subordination of a

mouse by a dominant intruder for consecutive days leads to anxiety-

like behavior, chronic elevation of glucocorticoid levels, and

suppression of immune responses [88]. Notably, psychological

stress due to social subordination has more severe effects on the

immune system than physical restraint stress, causing reduced

survival rates upon the immunological challenge of influenza

infection [89].

Box 2. Social plasticity in rodents

Rats and mice are highly adaptive in their social behavior [90]. The

most prominent example of this social plasticity in the wild is the

adaptation to population density. At low densities, groups of rats or

mice live within their selected territory, and display territorial

behavior towards intruders. The mature male patrols the bound-

aries of the territory and deposits urine to mark their own territory

and likely to countermark deposits of competitors. In case of an

encounter with an intruder, the male displays agonistic or

aggressive behavior causing the intruder to flee. Such territorial

behavior can only persist when invasions of a territory are

infrequent. Therefore, at high population densities rats and mice

become socially tolerant and adapt to a despotic social system, with

one male being socially dominant and the other males subordinate

[91,92]. Rodents also demonstrate their social plasticity when placed

in a laboratory setting. Groups of rats or mice in captivity develop a

strict social hierarchy as a necessity of the restraint of their cage.

Agonistic behavior by the dominant male serves to solidify social

hierarchies and avoid fighting. Only if the subordinate does not

respond with appropriate submissive behavior, violence is used by

the dominant [93]. The stability of a hierarchy decreases with an

increased number of mice per cage [94]. In addition the introduction

of objects into a cage can destabilize the social hierarchy, likely

because the objects are seen as a resource that needs to be

defended [95,96].
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the tube test was developed as a paradigm to score social
dominance in laboratory rodents [5]. After mice or rats are
trained to walk through a narrow tube, a nonviolent conflict
situation is created when two rodents are allowed to enter
the tube from opposite ends and meet in the middle. The one
that consistently forces the opponent to retreat is scored as
the more dominant of the pair. By applying a round-robin
match arrangement, the rank order can be determined for
any size of social group. This assay shows good stability and
transitivity when applied to either unfamiliar mice from
different inbred strains [5] or familiar cage-mates from the
same strain [6].

The observation that tube test winners are also domi-
nant in other types of social behavior supports the validity
of the tube test as a measure of social dominance. One of
the strongest correlates of the tube test rank is the ‘Dalila
effect’. The Dalila effect is an excessive type of grooming
regularly observed among laboratory mice in which the
most dominant mouse barbers the hair and plucks the
whiskers of its cage-mates. Several studies have shown
that the barber is generally the winner over its cage-mates
in the tube test [6–8]. When regrouping barber mice from
different cages, these mice first fought severely whereupon
the losers would then be trimmed by the winners, indicat-
ing that whisker trimming is a behavioral trait of domi-
nance [9]. One study, however, found that barbers were not
significantly more dominant in the tube test [10]. A poten-
tial reason for this contradictory result could be the differ-
ence in the tube test procedure: whereas the latter study
did not include a training session, and limited test sessions
to one day, the studies that did show a strong correlation
between tube test rank and barbering [6,9] ensured that
the mice were first well trained to pass the tube before
conflict situations were presented, and in these studies test
sessions were performed on consecutive days to derive a
stable rank.

Male mice that are dominant in the tube test are also
more inclined to actively woo a female. 70 kHz ultrasonic
vocalization is a prominent male characteristic during
courtship behavior [11], and has been linked to sexual
motivation [12]. Several studies have shown that male
mice that were top-ranked in the tube test emitted signifi-
cantly more vocalizations and had a quicker response when
receiving a female stimulus, whereas subordinates exhib-
ited almost no ultrasonic vocalization [6,11,13]. Important-
ly, in these studies ultrasonic production was tested in
male mice with no sexual experience, and in a novel
environment. Conversely, when pairs of sexually experi-
enced male mice were exposed to a female stimulus in their
home cage, the subordinate mice emitted more 70 kHz
vocalizations than their dominant cage-mate when the
latter was removed from the home cage [14]. Such differ-
ences suggest that social context or sexual experience may
modulate courtship behavior.

Urine marking is a common means of social communica-
tion in many mammalian species. The chemical cues in
urine convey social messages including territorial boundary
and social status [15]. When two previously single-housed
male mice were paired together, they first went through
aggressive encounters. When they were subsequently sepa-
rated by a wire partition, the dominant mice deposited small
drops of urine to mark the entire floor, whereas the sub-
ordinates only voided urine in a few pools in the cage corner
[16]. The dominant–subordinate relationship expressed by
urine marking appears less apparent in group-housed com-
pared with single-housed mice, presumably because aggres-
siveness was reduced to a low level in group-housed mice
with stable ranks [6]. Nevertheless, there was also a trend
675



Box 3. Relationship between aggression and social dominance

Dominance can be considered as an individual capacity, the capacity

to prevail in conflicts [4,97]; or as a relationship quality, the polarity in

agonistic interactions [98]. In the 1970s and 1980s fervent debates

were held over the question of whether social dominance is a useful

concept to describe animal and human behavior, or, in the extreme

case, whether it even exists (e.g., [98,99]). Much of the confusion

arose because the results of different behavioral paradigms that

aimed to measure social dominance or aggressive behavior were not

always in agreement. Intuitively, social dominance and aggression

may seem intimately linked, and many studies have demonstrated an

association between aggressive behaviors and dominance rank (e.g.,

[100–103]). However, many discrepant observations have also been

reported: for example, paradise fish of different social status did not

significantly differ in aggression level [104]; the aggressiveness of

chickens against a panel of standard opponents did not correlate with

their hierarchical rank [105]; and, in Rhesus monkeys, the aggressive

dominance score did not relate to competition for females [106]. The

ability to form coalitions and alliances is sometimes more important

than aggression in determining social (alpha) status in monkeys [107].

Popular laboratory tests of rodent aggression include the resident–

intruder model, in which an unfamiliar intruder confronts a larger and

more aggressive mouse in its homecage, and the winner–loser

paradigm, in which two previously isolated mice share sensory

contacts in a partitioned cage and the partition is lifted periodically to

allow physical contact [108–110]. In such tests for social dominance or

social defeat, the correlation between aggressiveness and social rank

in the tube test was not always apparent. Group-housed familiar mice

do not exhibit extensive aggressive behaviors towards cage-mates,

presumably owing to the suppression of aggression by a stable social

hierarchy [104]. When mice were tested in the resident–intruder

paradigm against unfamiliar standard opponent mice, aggressive

behaviors can be observed. However, rank-1 mice from the tube test

did not appear to be more aggressive [111]. Another study showed

that administration of (�)D9-trans-tetrahydrocannabinol (THC) to rats

reduced attacks and threats, but increased winning in the tube test

[112]. Such a dissociative effect on tube test and aggression may

suggest that the drug influences non-dominance-related factors to

affect performance in the tube test (e.g., factor X in Figure 1 in main

text) or, alternatively, that there is a distinction between aggression

and dominance. Although aggression may initially be necessary to

establish a hierarchy, once established a stable hierarchy can

suppress further aggression and unwanted fights among the group

members [104]. The decision to initiate aggressive behavior is likely

the result of a cost–benefit analysis that depends on social context,

requires cortical regulation, and is not necessarily restricted to

socially dominant individuals [113].
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for the mice ranked higher in the tube test to urinate more
and closer to the partition [6].

Other paradigms that measure social status among lab
rodents test the order of access to resources, the division of
labor, or the display of agonistic behavior. In the visible
burrow system (VBS), food and water are relatively diffi-
cult to retrieve. Because the dominants have priority
access, weight change in this paradigm indicates domi-
nance rank [17]. Dominance in the VBS was significantly
correlated with rank in the tube test [6]. Social dominance
can also be determined in the food competition test – in
which cage-mates compete for an appetitive drink or food
pellet [18,19]. The labor division test is based on the
principle that dominant individuals tend to refrain from
labor. In this paradigm, one rat (the ‘worker’) presses a bar
for another rat (the ‘parasite’) to get water. Interestingly,
rats that were selectively bred based on their dominant
tube test performance [20] became the ‘parasite’ in most
cases [21]. Agonistic behavior can be frequently observed in
a group of mice after transfer to a new and dirty cage,
presumably as a way to claim territory in a new environ-
ment [6]. More agonistic behavior (mostly chasing, very
rarely attacking) has been observed from mice ranked high
in the tube test [6]. However, whether the display of
aggression and social rank are always correlated is contro-
versial (Box 3).

In summary, a number of paradigms are available to
identify social hierarchies among laboratory rodents. In
particular the dominance rank derived from the tube test
was found to correlate well with the rank derived from
several other laboratory hierarchy tests. The tube test
results can therefore serve as an intervening variable to
explain multiple other types of social dominance behavior
in laboratory mice (Figure 1). Importantly, the order in
which the tube test and another measure of social domi-
nance behavior (e.g., weight change in the VBS) were
performed did not affect the observed correlations [6],
suggesting that the tube test itself did not induce an
artificial hierarchy. Compared with social defeat-based
676
models, the tube test may be more natural and less inter-
fering as well as introduce less stress. However, to ensure
validity, test procedures need to be standardized to mini-
mize variations; for example, whether animals have un-
dergone tube test training and whether the rank has
stabilized or not, which could have an impact on the tube
test results. One should especially caution that factors
other than dominance could also contribute to the result
of each individual dominance assay (Figure 1). Thus when
comparing genetically or pharmacologically modified mice
with control cage-mates for the role of a gene or neural
circuit in establishing dominance rank, it is essential to use
at least two dominance assays based on different sensory/
motor properties to prevent circular reasoning (Figure 1).

Cortical mechanisms underlying the recognition and
regulation of social hierarchy
Social hierarchy behavior depends on a collection of cogni-
tive traits that include recognition of social status, learning
of social norms, detection of violation of social norms,
reading the intentions of others, monitoring reciprocal
obligations [22], and perhaps also effort-based decision-
making on whether or not to compete against a conspecific.
For social recognition, a variety of sensory cues have been
reported to convey social status information in various
species. In angelfish, it was proposed that rates of fast
approach from dominants serve as a signal for subordi-
nates to restrain their growth [23,24]. In rats, reduced
sniffing by subordinates serves as an appeasement signal
to reduce aggression from dominants [25]. Many social
mammals use scent marking, tail raise, mounting or vo-
calization to express dominance [2]. In primates, facial
expressions are common: direct stare or eyebrow raise
are often used to signal dominance, whereas ‘fear grimace’
is used by subordinates to appease or redirect aggression
[26,27]. Recent neuroimaging studies in humans have
revealed a distinct network of cortical brain regions in-
volved in social status recognition. Social status inference
often recruits part of the occipitotemporal and parietal
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Figure 1. Relationships among different measures of dominance. Dominance is the common factor underlying the six types of rodent behavior depicted (modified from

[6]). For each of these behaviors a behavioral paradigm was designed. The performance in each of these paradigms also depends on sensory and motor factors unrelated to

dominance (factors M, N, P, Q, X, or Y) – for instance agility in the tube test or vocal abilities in courtship vocalization. We advise using more than one behavioral paradigm

to assess social rank, especially between rodents of different genetic backgrounds.
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cortex, which are involved in perceptual and attentional
process [28–30]. These findings dovetail nicely with re-
search showing that primates, including humans, general-
ly pay greater attention to high-status than to low-status
individuals in a social group [31].

Perhaps most information related to social hierarchies
is processed in the prefrontal cortex (PFC), the center for
executive behavioral control [32]. In participants of a study
that are engaged in an interactive simulated social context,
viewing the face of a superior versus an inferior player
selectively activated the dorsolateral PFC (DLPFC) [28], a
region implicated in top-down attentional control [33,34],
interpersonal judgments [35], social norm compliance [36],
and social moral judgment [37]. In an unstable hierarchy
setting, the medial PFC (mPFC) is activated [28]. The
mPFC is involved in signaling prediction errors of action
values [38], as well as recognizing the intentions and
motives, and forming judgments, of other people [39].
Nonverbal cues for high social status in humans, such
as body posture, lead to the activation of the ventrolateral
PFC (VLPFC). The VLPFC receives information from the
temporal lobes, particularly the superior temporal cortex
(STC) [40], which responds to faces and body movements,
and has been implicated in processing status cues [41]. In
addition, monkey studies suggested that the PFC registers
elements of social state. PFC neuron activity increased in
dominant monkeys and decreased in subordinate ones
during social engagement [42]. Furthermore, lateral
PFC neurons of monkeys represent winning and losing
in competitive video games [43]. For monkeys that live in
large social groups, the volume of grey matter in the rostral
PFC (rPFC) correlates with their dominance status, sug-
gesting that having larger rPFC may confer a social ad-
vantage [44]. Human studies also supported an association
between PFC grey matter volume and social success [45].

Consistent with these correlative studies, selective
lesions of some of the above-mentioned PFC areas have
impacted dominance-related social–emotional behaviors.
Clinical reports have suggested that lesions of the VLPFC,
VMPFC, or DLPFC impair processing of social hierarchy
information in humans [35,46,47]. Patients with lesions in
the DLPFC showed deficits in using social cues to make
interpersonal judgments [35]. Monkeys with lesion in an-
terior cingulate cortex (ACC) showed reduced social inter-
est in other macaques [48]. MPFC lesioned rats were more
subordinate in agonistic encounters, attended less daily
feeding sessions, and acted more timidly – consistent with
a lowered social rank [49]. The rodent mPFC can be divided
into the dorsal part, including the ACC and prelimbic
cortex, and the ventral part, the infralimbic cortex [50].
Lesions of the ACC in rats affected interest in other rats,
caused a reduction in social memory, as well as a defect in
effort-based decision-making [51]. Recently, the ACC has
also been implicated in the coding of competitive effort
677
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against peer animals: ACC neurons fired significantly
more when rats were on the trajectory that led to food
competition with a subordinate rat than to a dominant rat
[52]. In mice, the prelimbic cortex is activated upon social
interaction with an unfamiliar conspecific, and lesions of
the prelimbic area changed their behavior during social
interactions [53].

These studies indicate that the PFC may be involved in
the recognition, representation or regulation of social status.
However, with correlation or loss-of-function lesion data
alone, results can be difficult to interpret. For example,
lesions could damage fibers of passage and cause side effects.
To overcome this problem, Avale et al. used a mouse model
that has altered motivation for social interaction due to a
deficiency in the nicotinic acetylcholine receptor (nAChR),
and restored their social behavior by selectively rescuing
nAChR function in the prelimbic area of the mPFC [53]. This
study suggests that cholinergic input to the mPFC is impor-
tant for attentional control of social interactions. Wang et al.
investigated the functional consequence on the dominance
status of mice by promoting or blocking synaptic plasticity
selectively in dorsal mPFC (including prelimbic cortex and
ACC) neurons. The viral expression of AMPA-receptor sub-
unit GluA4 or signaling protein Ras in excitatory neurons of
the mPFC led to an increase in their average synaptic
strength, whereas the expression of the GluA4 C-tail or
Rap decreased average mPFC synapse strength [6]. These
manipulations potentially change the output activity of the
mPFC to downstream brain structures. Strikingly, these
manipulations resulted in bidirectional changes in domi-
nance rank in both the tube test and courtship ultrasound:
subordinate mice moved up in the tube test rank and
produced more ultrasound vocalizations towards females
when their synapses in the dorsal mPFC were strengthened;
conversely, dominant mice became subordinate when their
mPFC synapses were weakened (Figure 2). This study
demonstrates a bidirectional causal relationship between
Subordinate animal

Ras, GluR4

Rap, R4Ct

Spine

Axon terminal

Mini EPSC

Figure 2. Efficacy of mPFC synapses bidirectionally modulate the dominance status in 

with subordinates (e.g., [6]). Synapse strength is determined by recording AMPA recepto

strengthening of the mPFC synapses by expression of Ras or the AMPA receptor subu

dominant mice decreased in rank when their mPFC synapses were weakened by expre
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dorsal mPFC activity and dominance status. Because two
very different types of hierarchy-related behaviors (tube test
rank and courtship ultrasound production) are controlled by
mPFC synapses, it is likely that the mPFC plays a central
role in the regulation of social status. In addition, this
experimental strategy depends upon synapse manipulation,
and thus tends to mimic the natural physiological changes
occurring during behavioral plasticity [54]. This strategy, in
combination with optogenetic approaches to alter neuronal
firing, may be used in future studies to probe the functions of
different brain regions in mediating dominance behavior.

Subcortical mechanisms underlying the processing of
social hierarchy behavior
Prefrontal regulation of social hierarchy can be achieved via
control of downstream subcortical nuclei, which may be
involved in different aspects of dominance-related behaviors
(Figure 3). For example, projections from the mPFC can
drive the expression of emotional behavior through activa-
tion of the basolateral nucleus of the amygdala (BLA)
[55,56], which has heavy reciprocal direct connections with
the mPFC [57,58]. The amygdala processes social–emotion-
al stimuli such as facial expression [59] and interpersonal
space [60]. People with a larger and more complex social
network have an increased amygdala volume [61], as well as
stronger connectivity within amygdala–cortical networks
[62]. In humans, the amygdala plays an important role in
the emergence and representation of knowledge about social
hierarchies [63], and is activated together with the mPFC
when the social hierarchy becomes unstable [28]. Amygda-
loid lesions have produced different outcomes with regard to
dominance: some resulted in loss of dominance and compet-
itive behaviors [64,65], whereas others caused an increase in
aggression [66]. Recently, refined lesions of the amygdala in
monkeys yielded an increase of the crooktail dominance
display and elevated confidence in social interactions
[67,68]. These different consequences are probably due to
Dominant animal
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NMDA receptor

GlutamateKey
Vesicle
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mice. Socially dominant mice have stronger mPFC excitatory synapses compared

r-mediated miniature excitatory post-synaptic currents (mini EPSC). Upon selective

nit GluR4, subordinate mice moved up the hierarchical ladder. Reversely, socially

ssion of Rap or the GluR4 C-tail (R4Ct).
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Figure 3. Potential neural pathways of social dominance downstream of the mPFC. Abbreviations: BLA, basolateral amygdala; dmPFC, dorsomedial prefrontal cortex; DRN,

dorsal raphe nucleus; MD, mediodorsal nuclei of thalamus; PAG, periaqueductal grey; STR, striatum.
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functional heterogeneities within the amygdalar subnuclei
in regulating dominance behavior. Although future studies
are necessary to dissect more precisely the function of
individual subnuclei, these studies suggest that the amyg-
dala conveys important information about social status,
either downstream or upstream of mPFC.

Another mPFC downstream target implicated in the
expression of dominance behavior is the brainstem dorsal
raphe nucleus (DRN), the main serotonergic nucleus in the
brain. The relationship between serotonergic signaling and
dominance status has been most extensively studied in
crustaceans [69]. Injection of serotonin into crayfish or
lobsters tends to reduce the likelihood of retreat and
increases the duration of fighting [70,71]. Dominance sta-
tus also changes the modulatory effect of serotonin on the
Box 4. Outstanding questions and future directions

� What are the molecular determinants of dominance trait?

Dominance status can be regulated by both internal traits (size,

weight, aggression, courage, persistency, motivational drive, social

and fighting skills) and external factors (prior history of winning,

seniority, allies, prior residency). Dominance has been linked to

heritable personality traits in humans [114], and can be genetically

selected [20], suggesting a molecular genetic basis of dominance

trait. Several molecules have been implicated in dominance-related

behaviors, including the paternally imprinted gene Grb10 [115] and

the oxytocin system [25,116]. Notably, the oxytocin system is also

involved in mediating pair-bonding [117], suggesting that the

neuronal mechanisms that mediate social dominance and those

that are used for building partnerships overlap. It is interesting to

speculate that the ability to form alliances within a social group

positively affects the social status of an individual or, conversely,

that social status influences the capacity for pair-bonding. Future

work will be necessary to identify systematically the genetic and

epigenetic factors that determine or regulate the dominance trait.

� How do social interactions shape a dominance hierarchy?

Social status is relative by nature. The same animal can act

dominantly over a more subordinate opponent, but become

submissive against a more dominant one. Therefore, during the

establishment of a dominance hierarchy there must exist a dynamic

process through which animals adjust their own behavior and

neural activity based on the outcome of the interaction with other

social objects. How do winning and losing experiences modulate

the activity of the neural circuitry underlying dominance behavior?

And how do such changes lead to behavioral plasticity affecting

future social interactions? For instance, it is possible that elevated

stress levels during a first social encounter lead to a submissive role

[118] due to a stress-hormone-induced change in the capacity for
neural circuit involved in the escape response [72,73],
correlating with changes in their behavioral patterns
[69,74]. In vertebrates with more cortical development,
serotonergic modulation of dominance seems to be differ-
ent than that observed in crustaceans (reviewed in [69]). In
vervet monkeys, enhancing serotonergic signaling by flu-
oxetine caused reduced aggression, more affiliative behav-
ior, and better social skills; all of which contribute to higher
social status. By contrast, monkeys with lowered seroto-
nergic function showed higher levels of impulsive aggres-
sion and lower social status [75]. Studies in mice also
suggest that lowered serotonergic function is associated
with increased impulsive and aggressive behavior [76,77].
These studies suggest that the serotonergic system is likely
an intrinsic part of the neuronal circuitry that influences
synaptic plasticity [119]. It will also be interesting to assess to what

extent social network size and social enrichment affect the neuronal

circuits that control dominance behavior.

� How is behavioral specificity generated by the mPFC circuitry in

social hierarchy behavior?

In addition to dominance behavior, the mPFC has been implicated

in the control of a diverse array of behaviors including working

memory, decision-making, attention, fear response, and social

interaction. How does the mPFC manage to process all these

different types of functions? Are there separate mPFC microcircuits

that communicate through distinct upstream and downstream

connections? It is also possible that the mPFC plays a more generic

role, by planning actions based on schemas [120,121]. According to

this scenario, in the context of a social confrontation for instance,

the mPFC receives input on the current situation (e.g., is the social

opponent strong or weak, what’s at stake, etc.), compares this

information with previous encounters that were of similar nature,

and, based on what was learned from those experiences, activates

the downstream circuit for actions that proved most beneficial in

the past. New molecular and optogenetic tools will help delineate

the mPFC circuits involved in these processes.

� How does social status regulate health and other emotional

behaviors?

As detailed in Box 1, social status has a strong impact on health.

Rodent models of social hierarchy provide an excellent opportunity

to ask whether animals of higher or lower rank have more

compromised immune potency, or a higher propensity for anxiety,

depression, addiction, or other diseases. Understanding whether

and how mPFC and its downstream circuits mediate the health

effects of social status should shed light on the treatment of related

mental and physical health problems.

679



Review Trends in Neurosciences November 2014, Vol. 37, No. 11
the expression of dominance behavior. Notably, optoge-
netic activation of mPFC-to-DRN projection in mice in-
creased the motivation to act in challenging conditions
[78]. It is interesting to speculate that, in a socially domi-
nant individual, a stronger mPFC output to the DRN may
improve the motivation to compete in a social conflict.

In addition to the DRN, the hypothalamus and peria-
queductal grey (PAG) are the other potential downstream
areas with reciprocal connections to mPFC that are impli-
cated in the ‘sham rage’ response and in the regulation of
agonistic behavior [79]. It will be relevant to assess how the
mPFC modulates the activity of these subcortical aggres-
sion circuits and whether manipulating the pathway from
mPFC to these nodes is sufficient to modify aspects of
dominance behavior. The mPFC also strongly innervates
the striatum [57], which is particularly active during so-
cially rewarding events [80]. Social status information
evokes a ventral striatal response that is influenced by
one’s own subjective social economic status [81]. Given the
rewarding property of winning, it will be interesting to
investigate whether the mPFC–striatum circuit is involved
in the reinforcement of the social status through repeated
winning or losing experiences.

Concluding remarks and future directions
Both human and animal studies have achieved great
progress in identifying brain regions involved in social
dominance behavior. The PFC is identified as a prominent
mediator in the regulation and processing of social hierar-
chy. Excitatory synapses in the mPFC were shown to be
stronger in dominant mice compared with subordinates,
and manipulation of synaptic strength in the mPFC chan-
ged social status [6]. Possibly, winning in hierarchical
competitions leads to strengthening of mPFC synapses,
whereas losing weakens them. During social confronta-
tions, the mPFC may communicate with the amygdala for
emotional processing, with the serotonergic system for
motivation to act, and with the striatum for assigning
salience. Although the neuronal circuits that regulate
social dominance are beginning to emerge, many open
questions remain (Box 4). It is our hope that understanding
the neuronal circuits of dominance hierarchy may give new
insights into the future development of therapies for social
stress-related clinical phenomena.
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