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Dominance hierarchy profoundly impacts social animals’

survival, physical and mental health and reproductive success.

As the measurements of dominance hierarchy in rodents

become established, it is now possible to understand the

neural mechanism mediating the intrinsic and extrinsic factors

determining social hierarchy. This review summarizes the latest

advances in assay development for measuring dominance

hierarchy in laboratory mice. It also reviews our current

understandings on how activity and plasticity of specific

neural circuits shape the dominance trait and mediate the

‘winner effect’.
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Introduction
Social dominance is a universal phenomenon among

social animals, ranging from insects [1], fish [2], to rodents

[3] and primates [4]. Dominant individuals win more

frequently in social competitions. Dominance status

strongly impacts an animal’s survival, physical and mental

health and reproductive success [4–6]. A lack of motiva-

tion to compete in social contests may prevent individuals

from realizing their potential. Therefore, understanding
www.sciencedirect.com 
the central neural mechanism determining social hierar-

chy status is of critical importance.

Both intrinsic (physical and mental factors that are inher-

ent and located within, for example, body size/strength,

courage/fear, grit/persistency, stress level) and extrinsic

factors (factors that are not inherent, acting from the

outside, for example, environment, state of ally and

opponents, experience such as history of winning/losing)

contribute to social status determination. To understand

the neural mechanisms underlying these intrinsic and

extrinsic factors, simple and robust measurements for

social dominance hierarchy are essential. In this review,

we summarize the latest advances in the development of

social dominance assays. We will also discuss the neuro-

endocrine regulation and circuit-specific neural activity as

two examples of intrinsic factors, and the history of

winning/losing as an example of extrinsic factor, and

review the major findings in understanding how those

factors determine social dominance status.

Measurements of dominance hierarchy in
laboratory mice
Tube test

The tube test was developed in 1961 to measure domi-

nance tendency between different mouse strains [7]. For

a long time, it was used as a standard assay to screen the

behavioral phenotypes of genetically modified mouse

lines [8]. Wang et al. established in C57Bl/6 inbred

cagemate mice that dominance ranks derived from

the tube test are highly linear, stable, and correlate well

with ranks derived from several other measures that

reflect dominance hierarchy, including barbering, court-

ship ultrasonic vocalization, food competition in the visi-

ble burrow system, territory urine marking, and agonistic

behaviors [9] (Figure 1). Tube test is simple and robust,

introducing little stress and without causing injuries to

the animals. It has since been used to investigate social

dominance in mouse models of schizophrenia [10�], and

the impact of dominance status on urination [11�], social

interaction [12�], and vulnerability to social defeat [13��].

To analyze the detailed behavioral interactions during a

tube test, Zhou et al. conducted a fine-grained video

analysis [14��]. They quantified both behaviors generated

voluntarily when mice faced an opponent in the tube

(push-initiation) and the coping response when the oppo-

nent generated a push (push-back, resistance or retreat,

Figures 1 and 2). These detailed analyses revealed

insights on the potential internal states during social
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Figure 1
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Different measures of dominance in mice (modified from Wang et al. [9]). Performance in each of these paradigms is commonly regulated by

dominance but also depends on sensory and motor factors unrelated to dominance (factors M, N, P, Q, X, Y or Z) — for instance, cold tolerance

for the warm spot test or agility for the tube test. To rule out the interference of these other factors, we advise using more than one behavioral

paradigm to measure social rank, especially between mice of different genetic backgrounds or with drug treatments.
competition: Do mice win by initiating more pushes or by

being more persistent and resisting more pushes, or both?

Do they lose because of lower endurance or by avoiding

social engagement and initiating retreat voluntarily?

Indeed, Zhou et al. found that winner mice initiated more

pushes with longer duration, generated more push-backs

and resistance when being pushed. In contrast, loser mice

showed a higher probability of retreat (Figure 2). Under-

standing the whole process rather than only the outcome

may help rule out undesirable secondary effects. For

example, a less interesting scenario of winning might

be caused by the mouse remaining still all the time until

the opponent retreats. It is important to distinguish these

possibilities especially when analyzing animals with

genetic modifications or with drug treatments (Figure 1).

Defects in locomotion, social memory and muscle
Current Opinion in Neurobiology 2018, 49:99–107 
strength also need to be ruled out before conclusions

about social dominance can be made [14��].

Warm spot test

In addition to the assays mentioned above, a novel social

hierarchy paradigm — the warm spot test — has been

recently developed, making use of animals’ desire to stay

warm [14��]. In this test, four cagemate mice are placed on

an ice-cold floor with a warm spot in the corner, which can

only accommodate one mouse at a time. Mice show

competition to occupy the warm corner (Figure 1).

The amount of time each mouse occupies the warm spot

within the 20-min test is used to score social dominance.

The warm spot test mimics the natural competition

where the resources are limited and dominant individuals

pay more efforts to occupy the desirable territory. Social
www.sciencedirect.com
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Figure 2
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Neural mechanism of win/lose determination during tube test. (a) Behavior patterns of two mice in tube test are illustrated by different color-

blocks in the grey shade. Mice with higher neural activity in the dmPFC generate more effortful behaviors (including push and resistance) and less

passive behavior (retreat) during tube test confrontations, leading to winning. Activation/inactivation of dmPFC increase/decrease effortful

behaviors and lead to winning/losing respectively. (b) Sample behavior annotations of a pair of mice in a tube test trial. (c) Winner mice generate

more and longer push initiations and push-backs, and show more resistance when being pushed, while loser mice show a higher probability of

retreat. Modified from Zhou et al. [14��].
dominance hierarchy ranked by the warm spot test corre-

lates well with the tube test rank, cross-validating that these

two assays share dominance as a common core variable.

A single behavioral assay can be affected by multiple

sensory and motor factors, and each assay can also have its

own caveats. For example, warm spot test can be affected

by variation in temperature sensitivity or cold tolerance

across individual mice. Tube test can be affected by

agility or stress. Thus to increase confidence on the

conclusion about social dominance, it is ideal to use at

least two different dominance assays (Figure 1). When

mice behave more dominant in multiple assays, the

caveats of each assay can then be minimized.

The establishment of these simple and robust measures

of social hierarchy has enabled investigation into the

neural mechanism of social dominance determination.

Both internal traits (size, weight, courage/fear, grit/per-

sistency, aggressiveness, social and fighting skills) and

external factors (prior history of winning, allies, prior

residency) can have a significant impact on dominance

status. Below we review the neural mechanism underly-

ing some of these intrinsic (neuroendocrine, neural circuit

activity) and extrinsic (winning experience) factors in

social dominance determination. We also summarize

the major findings on factors regulating social dominance

in rodents in Table 1.

Neural mechanism underlying the intrinsic
trait of social dominance
Neuroendocrine mechanism

To understand the factors contributing to internal traits,

early studies were centered around hormonal effects and
www.sciencedirect.com 
identified that the level of androgens, especially testoster-

one, plays a correlative or even causal role in shaping the

dominance trait [16–20]. Testosterone levels rise rapidly

(within 45 min) [21] in species ranging from rodents to

humans after social competition, generally more in winners

than in losers [22]. After testosterone injection, low-ranked

hens increased their pecking order and rose to the top of

the hierarchy [23]. Conversely, dominance behaviors dis-

appeared in castrated rats [24]. However, such hormonal

manipulations were mostly administrated chronically, and

changes in dominance hierarchy were only observed weeks

or even months afterwards [23]. This time delay makes it

difficult to interpret whether testosterone acts gradually to

reshape the animals’ dominance character, or whether

reorganization of social hierarchy structure requires accu-

mulated changes in social interactions.

Less obvious is the relationship between levels of gluco-

corticoid stress hormones (corticosterone or cortisol) and

social dominance, which appears to be complex and

depends on several aspects of the social context. Sub-

ordinates generally show higher glucocorticoid levels than

dominant individuals [6,25], which seems to be particu-

larly the case in colonies with despotic dominants [26].

However, under social instability or high reproductive

pressures, high-ranking male monkeys display higher

cortisol levels than low-ranking males, suggesting that

dominance may also carry costs [6,27]. While this evi-

dence suggests that corticosterone might merely reflect

individual’s stress state regardless of social rank, studies

in rats have highlighted a role for corticosterone in

the consolidation of a subordinate status. Acute stress

experienced by one of two male rats during their first

encounter leads to social subordination and facilitates the
Current Opinion in Neurobiology 2018, 49:99–107
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Table 1

Summary of major findings on factors regulating social dominance in rodents

Underlying

factors

Animals (all in

males)

Dominance assay used Major findings related to social dominance

Neural circuit

activity

C57BL/6 mice Tube test

Ultrasound vocalization

Agonistic interaction

Allogrooming

Territory urine marking

Tube test rank is linear, transitive and correlates well with ranks

measured by other methods. Synaptic strength in dmPFC

determines social dominance status [9].

C57BL/6 mice Tube test

Warm spot test

Activity of dmPFC neurons instantaneously controls social

dominance behavior. MDT-dmPFC pathway mediates the winner

effect that can be generalized [14��].
C57BL/6 mice Tube test Metabolic profile in NAc is related to both social status and

vulnerability to stress [13��].
Wistar rats Offensive and defensive behaviors

during social encounter

Mitochondrial function in NAc is important for social hierarchy

establishment and relates to the low social status associated with

high anxiety [61].

Wistar rats Offensive and defensive behaviors

during social encounter

Systemic injection of anxiolytic drug diazepam improves social

competitiveness and NAc mitochondrial function [63].

Neuroendocrine Mus musculus Offensive and defensive behaviors

during social encounter

Testosterone level in male mice correlates with dominance status

[16].

CD1 mice Offensive and defensive behaviors

in pair-house and large vivarium

Social environment is a key modulator of the relationship between

social status and corticosterone and testosterone levels [26].

CD1 mice Offensive and defensive behaviors

in large vivarium

Elevated GnRH level in the mPOA detected in subdominant mice

in a social ascending paradigm [33��].
Long-Evans rats Agonistic behaviors in resident-

intruder test

Adding testosterone in the preoptic area of castrated rats restores

dominance [24].

Long-Evans rats Body weight combined with

offensive and defensive behaviors in

VBS

Subordinate has higher glucocorticoid levels than dominate

individuals [25].

Wistar rats Water competition test Stress shapes social hierarchy establishment by promoting

memory of hierarchy [28].

Wistar rats Food and water competition test Corticosterone level following a first social encounter modulates

social status [29].

Wistar rats Food and water competition test Oxytocin in the medial amygdala regulates stress potentiated

social hierarchy [30].

Genetics A/alb mice

C3H mice

DBA/8 mice

Tube test This study compared the tube test dominance between different

mouse strains, and the results are: A/alb>C3H>DBA/8 [7].

C57BL/6 X

S129Sv mice

Tube test Allogrooming Mice with schizophrenia-linked mutation show dominance-like

behaviors including tube test dominance and barbering [10�].
C57BL/6 mice Offensive and defensive behaviors

during social encounter

Dominant mice express more male pheromones and this trait is

heritable [81].

CD1 mice Offensive and defensive behaviors

in large vivarium

Social status is associated with variation in mRNA of plasticity

genes in hippocampus [80].

CD1 mice Offensive and defensive behaviors

in large vivarium

Individual variation in dominance status is associated with brain

gene expression [15].
long-term expression of subordination in future encoun-

ters [28]. The long-term facilitation of a recently

acquired subordinate, but not dominant, status is also

achieved by increasing post-encounter corticosterone

levels following a first social encounter [29]. Furthermore,

the potentiation of a social hierarchy by stress involves the

engagement of the social neuropeptide system oxytocin

in the medial amygdala [30], in line with a role of

this system in social recognition [31] and social domi-

nance [32].

The gonadotropin-releasing hormone (GnRH) has also

been implicated in the plasticity of social hierarchy. In an
Current Opinion in Neurobiology 2018, 49:99–107 
interesting social opportunity paradigm, where removal of

the alpha male from group-living mice leads to immediate

aggression of subdominant mice toward subordinates, an

elevated GnRH mRNA level in the medial preopic area

(mPOA) of the hypothalamus is detected in these sub-

dominant mice [33��].

Neural circuit mechanism

Recently, accumulating evidence has implied that social

dominance might be regulated by the activity of specific

neural circuits, especially circuits in the higher cortical

areas of the central nervous system [34,35]. The prefron-

tal cortex (PFC), in particular, has been implicated in
www.sciencedirect.com
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coding several cognitive features that might be related to

social hierarchy behavior, including social status recogni-

tion and representation [36,37], social norm compliance

[38], cost-benefit analysis and effort-based decision mak-

ing [39–42], as well as action planning in challenging or

competitive situations [36,43,44]. The volume of PFC

grey matter in monkeys and humans correlates with social

success [45,46]. Consistently, lesions in PFC impair pro-

cessing of social hierarchy information, reduce social

interest and lower social rank [47–50]. Furthermore,

viral-based molecular manipulations that increase or

decrease the synaptic efficacy of dorsal mPFC (dmPFC)

neurons in mice cause a gradual upward or downward shift

in their social status, respectively [9]. However, although

the effects of these viral experiments have a quicker onset

(12–48 hours) than the lesion studies (days to weeks), it is

still not fast enough to distinguish whether mPFC con-

trols dominance behavior through neuronal activation

directly, or indirectly by altering testosterone level.

Most recently, taking advantage of temporally precise

optogenetic tools, Zhou et al. discovered that optogenetic

excitation of dmPFC causes winning in an unexpectedly

fast manner (<1 min). Furthermore, single-unit tetrodes

recording and video analysis revealed that a population

of dmPFC neurons are activated during the effortful

(push or resist) behavioral epochs in the tube test

[14��]. Importantly, dmPFC activation does not seem

to enhance dominance by changing general locomotion,

anxiety, social memory, basal aggression, muscle strength

or testosterone level. Rather, dmPFC activation causes

the initiation and maintenance of more effortful behaviors

in social competition, suggesting that mPFC-based

cognitive processes might provide a neurobiological foun-

dation for dominance-associated traits, such as grit or

competitive drive (Figure 2).

Which upstream brain region may feed relevant sensory

information into the dmPFC for its cost-benefit analysis

during social competition? The mediodorsal thalamus

(MDT), as a higher order thalamic relay, shows strong

reciprocal connections with the mPFC [51–53]. The

MDT input into the mPFC is critical for the maintenance

of working memory [54] and attentional control [55]. As

an olfactory thalamus, the MDT processes olfactory

information [56] and 40% of neurons in the MD are

activated by social interaction [57], making it an ideal

upstream input to convey sensory information with social

content. Selective optogenetic activation of the synaptic

input from the MDT to dmPFC is sufficient to induce

tube test winning, highlighting the importance of this

pathway in dominance behavior [14��].

Another brain area that is emerging as critically involved

in social competitiveness and, consequently, in the early

stages of social hierarchy formation, is the nucleus accum-

bens (NAc). Its role is supported by human neuroimaging
www.sciencedirect.com 
data [37,58] and rodent studies involving a variety of

approaches; that is, from lesion [59] and neurochemical

[60] experiments to immediate early gene brain mapping

and psychopharmacological inactivation [61]. Impor-

tantly, mitochondrial function in the NAc has been

recently shown to play a crucial role in social hierarchy

establishment, particularly in mediating the influence of

anxiety on social competition [61]. Individuals high in

trait anxiety show low social competitiveness [61,62] and

impaired mitochondrial function mediates this effect

[61]. Conversely, boosting NAc mitochondrial function

either through intra-accumbal infusion of nicotinamide

[61] or by systemic injections of the anxiolytic drug

diazepam [63] improve social competitiveness. Dopa-

mine receptor 1-containing medium spiny neurons were

implicated in these effects [61,63]. In the future, it will be

important to determine whether accumbal mitochondrial

function is implicated not only in the establishment but

also in the maintenance of social rank in long-lasting

social groups. In support of this possibility is recent
1H-NMR spectroscopy data indicating that subordinate

mice in well-established colonies show lower levels of

energy-related metabolites in the NAc than dominant

ones [13��].

Neural mechanism mediating the
external regulation of social dominance —
the ‘winner effect’
Among the external factors that can regulate social domi-

nance, prior history of winning or losing can influence

an animal’s self-assessment and is an important

parameter for the cost-benefit computation in a social

competition. The ‘winner/loser effect’, by which winners

or losers in previous competitions are more likely to keep

winning or losing in future contests [64], exists across a

wide range of animal taxa, ranging from insects [65,66�],
crayfish [67], fish [68], birds [69] to humans [70]. The

reinforcement generated through the ‘winner effect’ can

have a long-lasting impact on social hierarchy [71].

Neural mechanism of the winner effect

Earlier work dissecting the neural mechanisms of ‘winner

effect’ focused on changes in the neuroendocrine system

including corticosteroid, androgen, testosterone and sero-

tonin, after repeated winning [72–75]. Recent studies

have begun to look into the plasticity of specific neural

pathways. In zebra fish, Chou et al. found that silencing of

the lateral subregion of the dorsal habenula (dHbL)

eliminates the ‘winner effect’ [76��]. The synaptic trans-

mission in the dHbL-dorsal/intermediate interpeduncu-

lar nucleus (d/iIPN) circuit is weakened by losing expe-

rience but remains unchanged by winning [76��]. In mice,

inspired by the finding that the MDT-dmPFC circuit

shows synaptic weakening after repeated social defeats

[77��], Zhou et al. tested whether the same MDT-dmPFC

pathway might mediate the ‘winner effect’. They found

that the synaptic strength in the MDT-dmPFC pathway
Current Opinion in Neurobiology 2018, 49:99–107
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Figure 3
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Plasticity of the MDT to dmPFC synapses mediates the winner effect. Repeated winning potentiates the synapses of the MDT to dmPFC pathway.

Optical LTP or LTD induction in these MDT-dmPFC synapses converts subordinate mice into dominants, and vice versa, respectively.
is enhanced after repeated winning. Importantly, opto-

genetic induction of long-term potentiation (LTP) in the

MDT-mPFC synapses directly causes sustained tube test

winning, whereas optogenetic long-term depression

(LTD) in the MDT-mPFC pathway eliminates the win-

ner effect (Figure 3).

Generalized ‘winner effect’

Animals encounter different forms of competition, over

food, water, territory, or mates, in establishing social

hierarchy. Earlier studies of the ‘winner effect’ were

restricted to the impact of winning on the same behavioral

paradigm [64], which might not capture the full complex-

ity of social confrontations in the real world. A generalized

form of the ‘winner effect’, where dominance transfers

from one type of contest (tube test) to another (warm spot

test), was recently described [14��]. Specifically, repeated

tube test winning induced by optogenetic activation

of dmPFC causes rank elevation in the warm spot test.

It is proposed that this transferability of the ‘winner

effect’ might reciprocally reinforce the dominance status

in differential social contests, facilitating the formation

and stabilization of dominance hierarchy.

Concluding remarks and future directions
It is an exciting time to be studying the neural mecha-

nisms of social hierarchy. The field is emerging and many

key issues remain to be addressed.

First a series of questions need to be addressed at the

neural circuit level. As the dmPFC contains heteroge-

neous neural populations, it will be important to deter-

mine how cells of different types or with different projec-

tions within the dmPFC microcircuit differentially

contribute to the control of social dominance. To under-

stand how dmPFC regulates social dominance through

top-down control of different subcortical nuclei, different

downstream pathways need to be deconstructed. As one

of the downstream targets of dmPFC, and given its
Current Opinion in Neurobiology 2018, 49:99–107 
involvement in reward and effort, the role of the NAc

in social hierarchy needs to be further dissected. Further-

more, as the experience of winning or losing is rewarding

or aversive, respectively, and can change the endocrine

system, it will be interesting to figure out how hormones

or reward-related neuromodulators interplay with the

synaptic plasticity mechanism to mediate the winner

effect.

Second, the organization of complex social structure and

maintenance of social hierarchy rely on individual recog-

nition, social memory and reinforcement learning process

[78–81,82��,83]. It will be very interesting to resolve the

role of these processes in the construction of social

hierarchy.

Third, the trait of dominance can be genetically selected

[81,84]. Yet isogenic mice with almost identical genetic

background still establish robust transitive linear social

hierarchy [9]. Thus both genetic and epigenetic factors

can be instrumental in the establishment of social hierar-

chy and need to be identified.

Last, but not least, as seen in Table 1, most studies on

social dominance in rodents have been conducted in male

animals. Dominance hierarchy is thought to be estab-

lished through aggressive interactions during initial

encounters, which is apparent in male mice but not

females. It remains an outstanding question how female

mice establish social hierarchy without overt aggression.
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